Методы анализа загрязнения воздуха

Анализ загрязнений воздуха относится к наиболее трудным задачам аналитической химии, поскольку в одной пробе одновременно могут находиться сотни токсичных примесей органических и неорганических соединений различных классов. Концентрации токсичных веществ, попадающих из различных источников в атмосферу и воздух рабочей зоны, находятся на уровне следовых количеств или микропримесей. Кроме того, воздух представляет собой неустойчивую систему с постоянно изменяющимся составом (наличие влаги, кислорода, фотохимические реакции, изменение метеорологических условий). Трудности при анализе подобных систем встречаются практически в каждой аналитической операции, начиная с отбора пробы и кончая детектированием примесей. Для определения концентраций вредных примесей в атмосферном воздухе вблизи железнодорожных путей в отработавших газах двигателей используются разные методы оценки, когда анализируются индивидуальные пробы газа, взятые дискретно и при непрерывных измерениях.

Основные требования к отбору проб газа и его анализу следующие:

  • все части системы отбора должны быть инертны по отношению к исследуемому компоненту;
  • температура системы отбора проб должна поддерживаться на уровне, исключающем конденсацию паров или взаимодействие компонентов исследуемой газовой смеси друг с другом;
  • объем пробы должен быть точно измеренным и достаточным для обеспечения требуемой точности измерений.

Автоматические приборы непрерывного действия используются для оперативного контроля уровня загрязнения атмосферного воздуха вблизи интенсивных источников выбросов (объектов энергетики, автомагистралей, химических производств и др.).

В газоаналитической аппаратуре реализуются следующие методы измерений:

  1. Непосредственное измерение показателя, характеризующего вредное вещество, без изменения химического состава пробы газа.
    Используются приборы, построенные на принципах избирательной абсорбции света в инфракрасной, ультрафиолетовой и видимой частях спектра, парамагнетизма, изменения плотности, теплопроводности, показателя преломления света.
  2. Вредное вещество, подлежащее измерению, переводится путем химических реакций в состояние, обладающее свойствами, доступными автоматическому измерению.
    Используются приборы фотометрического, гальванометрического, потенциометрического, термохимического принципов действия.

В конструкциях наиболее распространенных анализаторов различных газов используются разнообразные методы.

Абсорбционный метод спектрального анализа газов основан на свойстве веществ избирательно поглощать часть проходящего через них электромагнитного излучения. Специфичность спектра поглощения позволяет качественно определять состав газовых смесей, а его интенсивность связана с количеством поглощающего энергию вещества. Каждому газу присуща своя область длин волн поглощения. Это обусловливает возможность избирательного анализа газов.

Электрохимический метод газового анализа основан на использовании химических сенсорных датчиков, состоящих из двух чувствительных элементов и определенного химического покрытия, которое непосредственно контактирует с анализируемой средой и на котором происходит адсорбция анализируемого вещества. В зависимости от того, какие физические свойства, зависящие от количества адсорбированного вещества, измеряются, датчики делятся на потенциометрические, кулонометрические, полярографические и др.

Электрохимические газоанализаторы отличаются сравнительной простотой, низкой чувствительностью к механическим воздействиям, малыми габаритами и массой, незначительным энергопотреблением.

Пламенно-ионизационные газоанализаторы используются для измерения суммарной концентрации углеводородов различных классов, контроль которых избирательными методами анализа весьма сложен. Они обеспечивают надежное измерение в диапазоне концентраций 10-10000 млн-1, отличаются высокой чувствительностью (до 0,001 млн-1) и малой инерционностью. Позволяют раздельно определять содержание метана и реакционноспособных углеводородов, образующих в атмосфере фотохимический смог.

Хемилюминесцентный метод газового анализа применяется для измерения концентраций NОx, Оз и основан на реакции этих компонентов, подающихся одновременно в реакционную камеру, которая имеет вид:
NO + O3 → NO2(NO2•) + O2

Возбужденная молекула NO2• (образуется 5—10% от общего количества молекул NO2) отдает избыток энергии в виде излучения (в диапазоне волн длиной 600—2400 нм, с максимумом при 1200 нм)
NO2• → hv + NO2

Интенсивность излучения, измеряемого фотоумножителем, пропорциональна концентрации оксидов азота. Озон получают в генераторах в результате воздействия тлеющего разряда или ультрафиолетового излучения на кислородсодержащую смесь (воздух).

Хроматографический метод широко распространен и основан на использовании свойства разделения сложных смесей на хроматографической колонке, заполненной сорбентом.

Проба газа вводится в поток соответствующего газа-носителя простейшей форсункой и вместе с ним пропускается через колонки с твердыми адсорбирующими поверхностями (адсорбционная газовая хроматография), или с нанесенными на твердые поверхности нелетучими жидкостями (газожидкостная хроматография). Отдельные компоненты смеси с различными скоростями перемещаются в колонке, выходят из нее раздельными фракциями и регистрируются.

Газ-носитель, транспортирующий молекулы исследуемой газовой смеси, протекает с постоянной скоростью. Колонки, по которым проходит газ, калибруются для того, чтобы установить время прохождения того или иного компонента. Соответствующий детектор используется для обнаружения или определения количества того или иного компонента смеси. Количественная оценка осуществляется по интенсивности сигнала детектора или с помощью электронных интеграторов. Этим методом могут регистрироваться химически однородные вещества (индивидуальные углеводороды) со слабо выраженной качественной реакцией (N2O, СО), которые идентифицируются по специфичному времени удерживания.

В связи с внедрением современных средств электроники и миниатюризацией аналитической части хроматографов созданы портативные (переносные) приборы для осуществления газового анализа в полевых условиях (передвижные лаборатории на транспортных средствах). Наибольший интерес представляют переносные газовые хроматографы, запрограммированные для идентификации определенных компонентов газовой смеси. Результаты выражаются непосредственно в концентрации контролируемого вещества.

Метод ультрафиолетовой флуоресценции используется в приборах для контроля SО2 и Н2S. Явление флуоресценции заключается в способности определенных веществ излучать свет под воздействием излучения источника возбуждения.

Для молекул SО2 это облучение пробы газа светом в области длин волн 200—500 нм (максимум при 350 нм), когда эти молекулы переходят из возбужденного состояния в нормальное, разряжаясь частично через флуоресценцию.

Преимущество указанного метода по сравнению с методом пламенной фотометрии в отсутствии вспомогательных газов.

Гравиметрический (весовой) метод — традиционный метод определения концентрации твердых частиц в газовых смесях, связанный с отбором пробы, пропусканием ее через фильтр, взвешиванием фильтра или определением его степени черноты по эталону. Этот метод реализован в дымомерах, которые используются для определения дымности отработавших газов дизелей.

Необходимость непрерывного контроля содержания твердых частиц в отработавших газах двигателей или атмосферном воздухе привела к широкому распространению оптических, радиоизотопных методов анализа. Оптический метод анализа основан на измерении ослабления излучения твердыми частицами при прохождении луча света через измерительный канал определенной длины.

Лидарная система контроля загрязнения реализует лазерно-локационный метод — комбинационное рассеяние и дифференциальное поглощение загрязняющих веществ с использованием источника лазерного излучения и предназначена для дистанционного зондирования качества атмосферы. Состоит из лидара кругового обзора, который устанавливается вблизи источника загрязнения на доминирующих строениях, и предназначен для непрерывного контроля выбросов аэрозолей, NOx, SО2 на территории радиусом 7—15 км, измерения азимута и расстояния до источника загрязнения. Лидар второго типа установленный на базе автомобиля — комбинационного рассеяния используется для многокомпонентного анализа концентрации примесей в воздухе.